9+y^=(y-4)(y-1)

Simple and best practice solution for 9+y^=(y-4)(y-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9+y^=(y-4)(y-1) equation:



9+y^=(y-4)(y-1)
We move all terms to the left:
9+y^-((y-4)(y-1))=0
We add all the numbers together, and all the variables
y-((y-4)(y-1))+9=0
We multiply parentheses ..
-((+y^2-1y-4y+4))+y+9=0
We calculate terms in parentheses: -((+y^2-1y-4y+4)), so:
(+y^2-1y-4y+4)
We get rid of parentheses
y^2-1y-4y+4
We add all the numbers together, and all the variables
y^2-5y+4
Back to the equation:
-(y^2-5y+4)
We add all the numbers together, and all the variables
y-(y^2-5y+4)+9=0
We get rid of parentheses
-y^2+y+5y-4+9=0
We add all the numbers together, and all the variables
-1y^2+6y+5=0
a = -1; b = 6; c = +5;
Δ = b2-4ac
Δ = 62-4·(-1)·5
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{14}}{2*-1}=\frac{-6-2\sqrt{14}}{-2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{14}}{2*-1}=\frac{-6+2\sqrt{14}}{-2} $

See similar equations:

| 3(5y-4)+7=-2 | | M=8x+20 | | 152-y=274 | | (4+x)+(9+x)=35 | | -3z-7-4=20 | | 2(3y-4)=3(y-2^3 | | -7+10k=83 | | 5(t+4)-7=3 | | 4(k+11)=76 | | x-19(-6)=-102 | | x–5=10–x | | -6=y/4+6 | | 3(x-7)=7(x+1) | | 5x=21=15x-89 | | 6-4x=-36 | | -3/2(-1/3x+2)=-8 | | 2x-5(x-4)=-6+5x-38 | | 3/4(x+)=9 | | 3x-6=2x=2 | | 2x-5(x-4=-6+5x-38 | | -3(6x+5)=-69 | | -38=2-8(x+5) | | 5x=1=92 | | 40=2b+2(b+4) | | 4(-2x-10)-10=54 | | 14+4v=42 | | 0.001=x10 | | 14=4v=4 | | z/7-20=24 | | -13=-2k+5(4k+1) | | 9x+1+7x-9+5x=11 | | 49=-7(-5r-7) |

Equations solver categories